Remote Method Invocation

¢ Part 1: Alternate RPCs Models

e Part 2: Remote Method Invocation (RMI)

— Design issues

e Part 3: RMI and RPC Implementation and Examples

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS
Amberst

Lightweight RPCs

* Many RPCs occur between client and server on same machine

— Need to optimize RPCs for this special case => use a lightweight RPC
mechanism (LRPC)

» Server S exports interface to remote procedures
e Client C on same machine imports interface

* OS kernel creates data structures including an argument stack shared
between S and C

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS
Amberst

Lec. 04

Lec. 04

Lightweight RPCs

Client process Server process
server_door(...) €—————

door_return...)

}
en0 main()
¢ {

fd = open(door_name. ...):
door_cal i, -0 —,

Register door
‘ | |

= door_create(..):
fattach(fd door_name. ...):

* RPC execution

— Push arguments onto stack ([operatngeysom Ty ‘ +

4

Invoke registered door

— Trap to kernel ke reostere Return o caling process
— Kernel changes mem map of client to server address space
— Client thread executes procedure (OS upcall)
— Thread traps to kernel upon completion
— Kernel changes the address space back and returns control to client
¢ Called “doors” in Solaris

* Which RPC to use? - run-time bit allows stub to choose between LRPC and RPC

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Amberst

Other RPC Models

¢ Asynchronous RPC
— Request-reply behavior often not needed

— Server can reply as soon as request is received and execute procedure later
e Deferred-synchronous RPC
— Use two asynchronous RPCs
— Client needs a reply but can’t wait for it; server sends reply via another asynchronous RPC
¢ One-way RPC
— Client does not even wait for an ACK from the server
— Limitation: reliability not guaranteed (Client does not know if procedure was executed by the server).
University of

Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Amberst

Asynchronous RPC

Client Wait for result Client Wait for acceptance
] v] »
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —»
and return results
@) (b)

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Ambherst

Deferred Synchronous RPC

e Aclient and server interacting through two asynchronous RPCs

Wait for Interrupt client
. acceptance
ClieNt — *
A »
Call remote Return et
rocedure from call eturn
P results Acknowledge
Accept
Request request
STV O~ ————————
Call local procedure \ Time —»
Call client with
one-way RPC
University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04

Ambherst

Part 2:Remote Method Invocation (RMI)

* RPCs applied to objects, i.e., instances of a class
— Class: object-oriented abstraction; module with data and operations
— Separation between interface and implementation
— Interface resides on one machine, implementation on another

* RMIs support system-wide object references

— Parameters can be object references

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04

Amberst

Distributed Objects

Client machine Server machine

Object

Client Server
-« State
Client interface 0 Method
invokes » as object

thod h -
a metho Y Skeleton /il [T Interface
invokes — |
@ same method Skeleton

at object A
Client OS Server OS

I B

A~

N

Network
Marshalled invocation
is passed across network

¢ When a client binds to a distributed object, load the interface (“proxy”) into client address space
— Proxy analogous to stubs

e Server stub is referred to as a skeleton

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04

Amberst

Proxies and Skeletons

* Proxy: client stub
— Maintains server ID, endpoint, object ID
— Sets up and tears down connection with the server
— [Java:] does serialization of local object parameters

— In practice, can be downloaded/constructed on the fly (why can’t this be done
for RPCs in general?)

¢ Skeleton: server stub

— Does deserialization and passes parameters to server and sends result to proxy

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Ambherst

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(@)
Distr_object obj_ref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy
(b)

A. Example with implicit binding using only global references

B. Example with explicit binding using global and local references

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Ambherst

Parameter Passing

* Less restrictive than RPCs.
— Supports system-wide object references
— [Java] pass local objects by value, pass remote objects by reference
— Local objects: all normal classes; Remote objects: classes with RMIs (UnicastRemoteObject)

Machine A Machine B

Local Loca(l)?]bject R . [Remote object
emote 02
reference L1 |34 reference R1 E
\ L .

Client code with \
RMI to server at C

(proxy) Newlocal [/
reference ‘ Copy of O1 J

Remote T a4 V\\

invocation with T . ol T

L1and R1 as ul - Copy of R1t0 02

parameters - "~ Server code

Machine C (method implementation)

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04 11
Amberst

Part 3: Implementation & Examples

Java RMI

CRPC

Python Remote Objects (PyRO)

gRPC

University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04

Ambherst

12

Java RMI

e Server

— Defines interface and implements interface methods

— Server program

* Creates server object and registers object with “remote object” registry

* Client

— Looks up server in remote object registry

— Uses normal method call syntax for remote methods
* Java tools

— Rmiregistry: server-side name server

University of
Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04
Ambherst

Java RMI Example

Client
Interface
String host = (args.length < 1) ? null : args[0];
package example.hello; try
Registry registry = LocateRegistry.getRegistry (host);
import java.rmi.Remote; Hello stub = (Hello) registry.lookup("Hello");
import java.rmi.RemoteException; String response = stub.sayHello();
System.out.println("response: " + response);
public interface Hello extends Remote { } catch (Exception e) {
. . System.err.println("Client exception: " + e.toString());
String sayHello() throws RemoteException;
) e.printStackTrace () ;
}
try {
Server obj = new Server();
Hello stub = (Hello) UnicastRemoteObject.exportObject (obj, 0);

// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.getRegistry();
Server registry.bind("Hello", stub);

System.err.println("Server ready");
} catch (Exception e) {
System.err.println("Server exception: " + e.toString());
e.printStackTrace();
University of)
Massachusetts | Compsci 677: Distributed and Operating Systems

Lec. 04
Ambherst

13

Java RMI and Synchronization

¢ Java supports Monitors: synchronized objects
— Serializes accesses to objects
— How does this work for remote objects?
* Options: block at the client or the server
* Block at server
— Can synchronize across multiple proxies
— Problem: what if the client crashes while blocked?
* Block at proxy
— Need to synchronize clients at different machines
— Explicit distributed locking necessary
* Java uses proxies for blocking
— No protection for simultaneous access from different clients
— Applications need to implement distributed locking
University of

Massachusetts | Compsci 677: Distributed and Operating Systems CS677: Distributed OS Lec. 04 15
Ambherst

C/C++ RPC

e Uses rpcgen compiler to generate stub code; link with server and client C code

[procturcs | o —>f server
server stub /
Q_svcce

RPC=pecilication file)’?E(F:i
library

llent client stub \
| ap:IIZ:tlonl cc)]‘l client
¢ Q_xdr.c: do XDR conversion

e Sample code in lablet

University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04 16
Ambherst

Binder: Port Mapper

eServer start-up: create port

eServer stub calls sve_register to register prog. #, version # with local port mapper
«Port mapper stores prog #, version #, and port

Client start-up: call cInt_create to locate server port

eUpon return, client can call procedures at the server

= server
register server

machine
client
machine
University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04
Ambherst

Python Remote Objects (PyRO)

import Pyro5.api

@Pyro5.api.expose
class GreetingMaker(object):
def get_fortune(self, name):
return "Hello, {@}. Here is your fortune message:\n" \
"Behold the warranty —— the bold print giveth and the fine print taketh away.".format(name)

daemon = Pyro5.api.Daemon() # make a Pyro daemon

uri = daemon.register(GreetingMaker) # register the greeting maker as a Pyro object
print("Ready. Object uri =", uri) # print the uri so we can use it in the client later
daemon. requestLoop() # start the event loop of the server to wait for calls

$ python greeting-server.py
Ready. Object uri = PYRO:obj_fbfd1d6f83e44728b4bf89b9466965d5@localhost:35845

import Pyro5.api

uri = input("What is the Pyro uri of the greeting object? ").strip()
name = input("What is your name? ").strip()

greeting_maker = Pyro5.api.Proxy(uri) # get a Pyro proxy to the greeting object
print(greeting_maker.get_fortune(name)) # call method normally

uri = daemon.register(GreetingMaker) # register the greeting maker as a Pyro object
ns.register("example.greeting", uri) # register the object with a name in the name server

)) greeting_maker = Pyro5.api.Proxy("PYRONAME:example.greeting") # use name server object lookup uri
University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04
Ambherst

gRPC

e Google’s RPC platform: now available to all developers
e Modern, high-performance framework

» designed for cloud apps

gRPC Server

Works across OS, hardware and languages

C++ Service

Supports python, java, C++,C#, Go, Swift, Node.js,

Uses http/2 as transport protocol

ProtoBuf for serializing structured messages

University of
Massachusetts | Compsci 677: Distributed and Operating Systems
Ambherst

Protocol Buffers (ProtoBuf)

* Allow message structure to be defined for communication

 Platform-independent; marshalling/serialization built-in
» Define message structure in .proto file

message SearchRequest {
required string query = 1;
optional int32 page_number = 2;
optional int32 result_per_page = 3;

b

» Use protocol compiler protoc to generate classes

e Classes provide methods to access fields and serialize / parse from raw bytes e.g.,
set_page _number()

¢ Like JSON, but binary and more compact

 https://developers.google.com/protocol-buffers

University of
Massachusetts | Compsci 677: Distributed and Operating Systems
Ambherst

Ruby Client

Android-Java Client

Lec. 04

Lec. 04

20

gRPC Example

* Define gRPCs in proto file with RPC methods

¢ params and returns are protoBud messages;

// The greeter service definition.
service Greeter {

// Sends a greeting

rpc SayHello (HelloRequest) returns (HelloReply) {}
}

// The request message containing the user's name.
message HelloRequest {

string name = 1;
}
// The response message containing the greetings
message HelloReply {

string message = 1;

}
¢ use protoc to compile and get client stub code in preferred language

¢ gRPC server on server side

University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04
Ambherst

dgRPC Features

e Four types of RPCs supported
* Unary RPC, server streaming, client streaming, bi-drectional

* Unary RPC sends single response message, streaming can send any number of messages

rpc LotsOfReplies(HelloRequest) returns (stream HelloResponse);

rpc LotsOfGreetings(stream HelloRequest) returns (HelloResponse);

* Supports synchronous and asynchronous calls

» Deadlines/timeouts: client specifies timeout, server cn query to figure out how much time is left to
produce reply

e Cancel RPC: server or client can cancel rpc to terminate it

University of
Massachusetts | Compsci 677: Distributed and Operating Systems Lec. 04
Ambherst

21

22

