
Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Remote Method Invocation
• Part 1: Alternate RPCs Models

• Part 2: Remote Method Invocation (RMI)

– Design issues

• Part 3: RMI and RPC Implementation and Examples

1

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Lightweight RPCs

• Many RPCs occur between client and server on same machine

– Need to optimize RPCs for this special case => use a lightweight RPC
mechanism (LRPC)

• Server S exports interface to remote procedures

• Client C on same machine imports interface

• OS kernel creates data structures including an argument stack shared
between S and C

2

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Lightweight RPCs

• RPC execution

– Push arguments onto stack

– Trap to kernel

– Kernel changes mem map of client to server address space

– Client thread executes procedure (OS upcall)

– Thread traps to kernel upon completion

– Kernel changes the address space back and returns control to client

• Called “doors” in Solaris

• Which RPC to use? - run-time bit allows stub to choose between LRPC and RPC

3

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Other RPC Models
• Asynchronous RPC

– Request-reply behavior often not needed

– Server can reply as soon as request is received and execute procedure later

• Deferred-synchronous RPC

– Use two asynchronous RPCs

– Client needs a reply but can’t wait for it; server sends reply via another asynchronous RPC

• One-way RPC

– Client does not even wait for an ACK from the server

– Limitation: reliability not guaranteed (Client does not know if procedure was executed by the server).

4

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Asynchronous RPC

5

2-12

a) The interconnection between client and server in a traditional RPC

b) The interaction using asynchronous RPC

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

 Deferred Synchronous RPC
• A client and server interacting through two asynchronous RPCs

6

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Part 2:Remote Method Invocation (RMI)

• RPCs applied to objects, i.e., instances of a class

– Class: object-oriented abstraction; module with data and operations

– Separation between interface and implementation

– Interface resides on one machine, implementation on another

• RMIs support system-wide object references

– Parameters can be object references

7

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Distributed Objects

• When a client binds to a distributed object, load the interface (“proxy”) into client address space

– Proxy analogous to stubs

• Server stub is referred to as a skeleton

8

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Proxies and Skeletons
• Proxy: client stub

– Maintains server ID, endpoint, object ID

– Sets up and tears down connection with the server

– [Java:] does serialization of local object parameters

– In practice, can be downloaded/constructed on the fly (why can’t this be done
for RPCs in general?)

• Skeleton: server stub

– Does deserialization and passes parameters to server and sends result to proxy

9

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Binding a Client to an Object

A. Example with implicit binding using only global references

B. Example with explicit binding using global and local references

10

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object

obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a)

Distr_object obj_ref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects

obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy

obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b)

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Parameter Passing
• Less restrictive than RPCs.

– Supports system-wide object references

– [Java] pass local objects by value, pass remote objects by reference

– Local objects: all normal classes; Remote objects: classes with RMIs (UnicastRemoteObject)

11

Compsci 677: Distributed and Operating Systems Lec. 04

Part 3: Implementation & Examples
• Java RMI

• C RPC

• Python Remote Objects (PyRO)

• gRPC

12

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Java RMI
• Server

– Defines interface and implements interface methods

– Server program

• Creates server object and registers object with “remote object” registry

• Client

– Looks up server in remote object registry

– Uses normal method call syntax for remote methods

• Java tools

– Rmiregistry: server-side name server

13

Compsci 677: Distributed and Operating Systems Lec. 04

Java RMI Example

14

Interface Client

Server

Compsci 677: Distributed and Operating Systems Lec. 04CS677: Distributed OS

Java RMI and Synchronization
• Java supports Monitors: synchronized objects

– Serializes accesses to objects

– How does this work for remote objects?

• Options: block at the client or the server

• Block at server

– Can synchronize across multiple proxies

– Problem: what if the client crashes while blocked?

• Block at proxy

– Need to synchronize clients at different machines

– Explicit distributed locking necessary

• Java uses proxies for blocking

– No protection for simultaneous access from different clients

– Applications need to implement distributed locking

15

Compsci 677: Distributed and Operating Systems Lec. 04

C/C++ RPC
• Uses rpcgen compiler to generate stub code; link with server and client C code

• Q_xdr.c: do XDR conversion

• Sample code in lablet

16

Compsci 677: Distributed and Operating Systems Lec. 04

Binder: Port Mapper
•Server start-up: create port

•Server stub calls svc_register to register prog. #, version # with local port mapper

•Port mapper stores prog #, version #, and port

•Client start-up: call clnt_create to locate server port

•Upon return, client can call procedures at the server

17

Compsci 677: Distributed and Operating Systems Lec. 04

Python Remote Objects (PyRO)

18

Compsci 677: Distributed and Operating Systems Lec. 04

gRPC
• Google’s RPC platform: now available to all developers

• Modern, high-performance framework

• designed for cloud apps

• Works across OS, hardware and languages

• Supports python, java, C++,C#, Go, Swift, Node.js, ….

• Uses http/2 as transport protocol

• ProtoBuf for serializing structured messages

19

Compsci 677: Distributed and Operating Systems Lec. 04

Protocol Buffers (ProtoBuf)
• Allow message structure to be defined for communication

• Platform-independent; marshalling/serialization built-in
• Define message structure in .proto file

• Use protocol compiler protoc to generate classes

• Classes provide methods to access fields and serialize / parse from raw bytes e.g.,
set_page_number()

• Like JSON, but binary and more compact

• https://developers.google.com/protocol-buffers

20

Compsci 677: Distributed and Operating Systems Lec. 04

gRPC Example
• Define gRPCs in proto file with RPC methods

• params and returns are protoBud messages;

• use protoc to compile and get client stub code in preferred language

• gRPC server on server side

21

Compsci 677: Distributed and Operating Systems Lec. 04

gRPC Features

• Four types of RPCs supported

• Unary RPC, server streaming, client streaming, bi-drectional

• Unary RPC sends single response message, streaming can send any number of messages

• Supports synchronous and asynchronous calls

• Deadlines/timeouts: client specifies timeout, server cn query to figure out how much time is left to
produce reply

• Cancel RPC: server or client can cancel rpc to terminate it

22

